車牌識(shí)別技術(shù)原理
車牌識(shí)別技術(shù)(vehicle license plate recognition,vlpr)是指能夠檢測(cè)到道路路面高速行駛的車輛并自動(dòng)提取車輛牌照的信息(含漢字字符、英文字母、阿拉伯?dāng)?shù)字及號(hào)牌顏色)進(jìn)行處理的技術(shù)。車牌識(shí)別技術(shù)是現(xiàn)代智能交通系統(tǒng)重要組成部分,其應(yīng)用十分廣泛。
車牌識(shí)別技術(shù)原理
車輛檢測(cè):可采用埋地線圈檢測(cè)、紅外檢測(cè)、雷達(dá)檢測(cè)技術(shù)、視頻檢測(cè)等多種方式感知車輛的經(jīng)過(guò),并觸發(fā)圖像采集抓拍。
圖像采集:通過(guò)高清攝像抓拍主機(jī)對(duì)通行車輛進(jìn)行實(shí)時(shí)、不間斷記錄、采集。
預(yù)處理:噪聲過(guò)濾、自動(dòng)白平衡、自動(dòng)曝光以及伽馬校正、邊緣增強(qiáng)、對(duì)比度調(diào)整等。
車牌定位:在經(jīng)過(guò)圖像預(yù)處理之后的灰度圖像上進(jìn)行行列掃描,確定車牌區(qū)域。
字符分割:在圖像中定位出車牌區(qū)域后,通過(guò)灰度化、二值化等處理,精確定位字符區(qū)域,然后根據(jù)字符尺寸特征進(jìn)行字符分割。
字符識(shí)別:對(duì)分割后的字符進(jìn)行縮放、特征提取,與字符數(shù)據(jù)庫(kù)模板中的標(biāo)準(zhǔn)字符表達(dá)形式進(jìn)行匹配判別。
結(jié)果輸出:將車牌識(shí)別的結(jié)果以文本格式輸出。
車牌識(shí)別技術(shù)流程剖解
車牌識(shí)別系統(tǒng)采用高度模塊化的設(shè)計(jì),將車牌識(shí)別過(guò)程的各個(gè)環(huán)節(jié)各自作為一個(gè)獨(dú)立的模塊。
一、車輛檢測(cè)跟蹤模塊
車輛檢測(cè)跟蹤模塊主要對(duì)視頻流進(jìn)行分析,判斷其中車輛的位置,對(duì)圖像中的車輛進(jìn)行跟蹤,并在車輛位置時(shí)刻,記錄該車輛的特寫(xiě)圖片,由于加入了跟蹤模塊,系統(tǒng)能夠很好地克服各種外界的干擾,使得到更加合理的識(shí)別結(jié)果,可以檢測(cè)無(wú)牌車輛并輸出結(jié)果。
二、車牌定位模塊
車牌定位模塊是一個(gè)十分重要的環(huán)節(jié),是后續(xù)環(huán)節(jié)的基礎(chǔ),其準(zhǔn)確性對(duì)整體系統(tǒng)性能的影響巨大。車牌系統(tǒng)摒棄了以往的算法思路,實(shí)現(xiàn)了一種基于學(xué)習(xí)的多種特征融合的車牌定位新算法,適用于各種復(fù)雜的背景環(huán)境和不同的攝像角度。
三、車牌矯正及精定位模塊
由于受拍攝條件的限制,圖像中的車牌總不可避免存在一定的傾斜,需要一個(gè)矯正和精定位環(huán)節(jié)來(lái)進(jìn)一步提高車牌圖像的質(zhì)量,為切分和識(shí)別模塊做準(zhǔn)備。使用精心設(shè)計(jì)的快速圖像處理濾波器,不僅計(jì)算快速,而且利用的是車牌的整體信息,避免了局部噪聲帶來(lái)的影響。使用該算法的另一個(gè)優(yōu)點(diǎn)就是通過(guò)對(duì)多個(gè)中間結(jié)果的分析還可以對(duì)車牌進(jìn)行精定位,進(jìn)一步減少非車牌區(qū)域的影響。
四、車牌切分模塊
車牌系統(tǒng)的車牌切分模塊利用了車牌文字的灰度、顏色、邊緣分布等各種特征,能較好地抑制車牌周圍其他噪聲的影響,并能容忍一定傾斜角度的車牌。這一算法有利于類似移動(dòng)式稽查這種車牌圖像噪聲較大的應(yīng)用。
五、車牌識(shí)別模塊
在車牌識(shí)別系統(tǒng)中,通常采用多種識(shí)別模型相結(jié)合的方法來(lái)進(jìn)行車牌識(shí)別,構(gòu)建一種層次化的字符識(shí)別流程,可有效地提高字符識(shí)別的正確率。另一方面,在字符識(shí)別之前,使用計(jì)算機(jī)智能算法對(duì)字符圖像進(jìn)行前期處理,不僅可盡可能保留圖像信息,而且可提高圖像質(zhì)量,提高相似字符的可區(qū)分性,保證字符識(shí)別的可靠性。
六、車牌識(shí)別結(jié)果決策模塊
識(shí)別結(jié)果決策模塊,具體地說(shuō),決策模塊利用一個(gè)車牌經(jīng)過(guò)視野的過(guò)程留下的歷史記錄,對(duì)識(shí)別結(jié)果進(jìn)行智能化的決策。其通過(guò)計(jì)算觀測(cè)幀數(shù)、識(shí)別結(jié)果穩(wěn)定性、軌跡穩(wěn)定性、速度穩(wěn)定性、平均可信度和相似度等度量值得到該車牌的綜合可信度評(píng)價(jià),從而決定是繼續(xù)跟蹤該車牌,還是輸出識(shí)別結(jié)果,或是拒絕該結(jié)果。這種方法綜合利用了所有幀的信息,減少了以往基于單幅圖像的識(shí)別算法所帶來(lái)的偶然性錯(cuò)誤,大大提高了系統(tǒng)的識(shí)別率和識(shí)別結(jié)果的正確性和可靠性。
七、車牌跟蹤模塊
車牌跟蹤模塊記錄下車輛行駛過(guò)程中每一幀中該車車牌的位置以及外觀、識(shí)別結(jié)果、可信度等各種歷史信息。由于車牌跟蹤模塊采用了具有一定容錯(cuò)能力的運(yùn)動(dòng)模型和更新模型,使得那些被短時(shí)間遮擋或瞬間模糊的車牌仍能被正確地跟蹤和預(yù)測(cè),最終只輸出一個(gè)識(shí)別結(jié)果。